
1

Making and breaking code poems 



2



3

Making and breaking code poems 



4



5

Making and breaking code poems 



6

Preface by Winnie Soon    6
Introduction by Merethe Riggelsen Gjørding and Edith Terte    8

Stages of Feminist Activism by Lara Reime   12
Public Class Surveillance by Edith Terte   15
Gender Trouble X Public Class Surveillance by Anonymous   18
If, then! By Christopher Gad   20
Asking by Merethe Riggelsen Gjørding   22
DROP TABLE; by Mace Ojala   24



7

Making and breaking code poems 

Untitled by Anonymous   28
Light and Dark by David Søbæk Olsen   30
Else Include by Marisa Leavitt Cohn   32
Net Day by Jessamy Perriam   36
Stories tell stories by Imke Grabe   38
Your Code Poem   40
Afterword, Rachel Douglas-Jones and Marisa Leavitt Cohn   42
References   48



8

Code poetry is a form of experimental writing and coding. Both 
writing and coding pay attention to the poetics of syntax, grammar, 
and punctuations, considering natural and computer languages as 
playful and aesthetic materials. This mix of languages is called 
“codework”, a genre coined by poet-theorist Alan Sondeim which 
he describes as "the computer stirring into the text, and the text 
stirring the computer” (2001). Though textuality is an important 
element in language that contains meaning yet it requires interpre-
tation, I want to point to the aspect of performativity in computer 
code and natural languages. One might draw upon John Langshaw 
Austin’s Speech-Act theory in thinking about the things that you 
can do with performative speech, in which the utterance of words 
carries inherent actions beyond simply making statements. How-
ever, code execution is different from the speech-act, because 
computer code, especially high-level programming language, is 
written for both humans and machines. When a piece of source 
code is executed, the computer is doing something immediately, 
for example, the translation of high-level code to binary code, or to 
display certain visual and textual materials on a web page. In this 
way, there are different kinds of readers beyond the human.

Queer Code |  Figure 1: A code snippet of Vocable Code (2017) by Winnie Soon

PREFACE

Making and breaking code poems 



9

Making and breaking code poems 

Code poetry becomes highly interesting and challenging because 
the piece of code deals with the poetics of two different formalities 
and systems. In this zine, many entries use specific computational 
syntax, such as conditional if-else statements, boolean values of 
true and false, function blocks, while/for loops among others. But 
we also see some conceptual computational terms are in use, for 
example, “Include”, “Exit”, “Break”, “String”, “Retry”, “Null”, etc. In 
other words, the aesthetics of code poetry lies in the material and 
linguistic tensions of writing and reading code (Soon 2018). It is 
important to note that such an experimental form of writing is more 
than making things functionally work. When source code and crit-
ical writing operate together, the codework embodies “queer code,” 
refusing the normativity of coding practice and queering code 
beyond the solution-orientation as a dominant frame. In the words 
of Karen Barad, to queer something is to engage with “political 
imaginaries,” exploring “new forms of becoming, new possibilities 
of kinship, alliance, and change” (2015, 410). As such, queer code 
focuses on the performativity of code, subjectivity and language to 
create new forms of embodiment through reading, writing, coding 
and speaking practices.

WINNIESOON

By Winnie Soon

Austin, John Langshaw. How to Do Things with Words. Oxford: Clarendon Press, 1975.
Barad, Karen. “Transmaterialities: Trans*/matter/realities and queer political imaginings.” 
GLQ: A journal of lesbian and gay studies 21.2-3 (2015): 387-422.
Sondheim, Alan. “Introduction: codework.” American Book Review 22, no. 6 (2001): 1-+.
Soon, Winnie. “Vocable Code.” MAI Feminism & Visual Culture Autumn Issue (2) (2018).

references:

Making and breaking code poems 
C

ode poetry  :>)



10

Code has become a ubiquitous and 
intertwined part of our everyday lives. 
Many of us, however, don’t encounter 
code as language and commands in 
a terminal. Not knowing how to code 
or having limited abilities in under-
standing code language, can hinder 
our ability to relate to code. Yet, we 
live in and experience code in action.

Code language as part of a poem 
works by other logics. It does not need 
to comply to any sy ntax, and you do 
not need coding skills in Java, Python 
or R to appreciate code poems or work 
with codes in a poem creation. This 
opens code to new interpretations 
and forms of participation.

A code poem is a play of integrating 
languages. It engages us with code in 
a poetic manner: Noticing code’s quali-
ties and how these affect us as a com-
poser or a reader of the poem. 

This praxis of reading and doing 
code poems can be part of leaning 
into the world of code and getting 
more familiar with the various langu-
ages and ways of code, which are 
affecting us in so many ways.

In ETHOS Lab we continuously work 
with matters of technology; how they 
work in practice and how we relate 
to them, and these thoughts and de-
sires led us to decide to host a work-
shop on code poetry in the Lab on 
Ada Lovelace Day

Weaving languages together
Augusta Ada King (1815-1852), Count-
ess of Lovelace, known as Ada Love-
lace, has during the last two decades 
been recognized and honored for her 
important contributions and philo-
logical reflections on computing. 

In 1843, she was the first person to 
publish what we now would call a 
computer programme. The programme 
was for mathematician Charles Bab-
bage’s Analytical Engine – the first 
mechanical com puter – which only 
partly was built and never got fully 
deve loped. Lovelace wrote a set of 
instructions of how to calculate the 
numbers of Bernoulli1  on the Analyti-
cal Engine, encoding punch cards. 
While Lovelace’s contributions to the 
Analytical Engine have been re cog-

By Merethe Riggelsen Gjørding and Edith Terte

INTRODUCTION

1 A sequence of rational numbers which occur frequently in number theory. The Bernoulli 
numbers were discovered independently by the Swiss mathematician Jacob Bernoulli, and 
the Japanese mathematician Seki Takakazu. Seki’s discovery was posthumously published 
in 1712 in his work Katsuyō Sanpō; Bernoulli’s, also posthumously, in his Ars Conjectandi of 
1713. Perhaps, not surprisingly, the discovery took the name after Jacob Bernoulli.

Making and breaking code poems 



11

Making and breaking code poems 

nized to some degree, often left out 
are her contributions to sketch out 
and envision the creative potential of 
computers. 

Lovelace imagined the Analytical 
Engine to be much more than just a 
smart calculator. She saw that a com-
puter could be making music or 
graphics, given the right inputs. Love-
lace realized that codes can create 
art. They can be artful. 

In her now famous article Sketch of 
the analytical engine invented by 
Charles Babbage from 1842, she noted: 
“(...) the Analytical Engine weaves alge­
braical patterns just as the Jac qu ard­ 
loom weaves flowers and leaves.” 2 

Correspondingly, in our code po e    try 
workshop we were weaving machine 
and human readable language togeth-
er. In doing so, we came to re cognize 
how mac hine-readable lang uage is 
always already made up by human- cre-
ated signs and letters, but non e   th   e   less 
exploring poeti cally brou ght new pat-
terns and meanings to appear. Code 
poems when running in a terminal are 
fast composers of a fabric and form. 

Engaging with code as a poetic 
language
Ada Lovelace Day is a day for cel ebra-
  t  ing women and their achieve ments 
in STEM (Science, Technology, Engi-
neering & Mathematics). It is widely 
known that these fields face a great 
gender inequality both historically and 
currently, which takes many forms; 
cultural narrations, payment gap, ac-
knowledgement gabs, hiring gaps etc.

In ETHOS, we wanted to further un-
fold the diversity issue, r emembering 
that the category of women inter sects 
with a lot of other social categories 
and possible margi nali zations, and 
expanding the gendered perspective 
to include non-binary and trans people. 

We actively worked with that in our 
way of framing our event on code 
poe try and by including quotes from 
a diverse section of feminist scholars 
and non-   cismen working within STEM. 
The quotes were used as materials in 
the poem creation. Participants could 
find inspiration in the quotes or use 
full sentences.

2 Lovelace in: Menabrea, L. F., & Lovelace, A. (1842).  
Sketch of the analytical engine invented by Charles Babbage. 

C
ode poetry  :-{-



12

We related to codes not in terms of 
their functionality as a programming 
language but as a poetic language. 
We encouraged people to create a 
code poem from what spoke to them 
in that current moment, in relation-
ship to their abili ties, voice, and 
desire. 

It feels great to think about that 
from a poem creation session in less 
than an hour, beautiful and thought- 
pro voking pieces can be generated. 

We ate a delicious cake with a laser 
printed code poem in marzi pan; looked 
at each other’s creations and shared 
experiences of engaging with codes 
in this way. 

When we later on mailed with people, 
asking if they would like to feature in 
this very collection, we also asked 
them to send us a reflection note. 
Some of them are short, and others 
give more context to the composer’s 
thoughts around their poem. 

This collection is also an ex tension 
of the invitation to make po  etry with 
us, to you. 

If and when you feel inspired, put 
the book away and get going with 
your own poem. In the end of the 
book, you will find a page ready for 
your poem to be featured. 

We hope you will enjoy reading and 
relating to codes and code poetry. 

Making and breaking code poems 



13

Making and breaking code poems 



14



15

Making and breaking code poems 

The poem maps the stages of feminist activist engagement. She, the 
curious and critical feminist explores the matrix of power in different 
institutions and socio-technical systems. Through collective action, 
nurtured from relations and shared experiences, she acts against 
those mechanisms of domination. With love and care, for oneself and 
others as well as non-human companions, the matrix of power can 
potentially be broken (hence the <matrix of power> </love>).

STAGES OF FEMINIST

By Lara Tatjana Reime

C
ode poetry :-T

ACTIVISM



16



17

Making and breaking code poems 

Using my knowledge of programming in Java, I decided to make a 
code poem focused on surveillance. The Surveillance class represents 
in general terms the actions of a surveillance camera. It moves, it 
observes by passers etc. By instantiating a surveillance object, given 
it a specific person to act towards, the poem becomes personal - It 
is not just random people who are followed, it is you! Executing the 
code, you are presented with the quote “privacy is any rights you 
have to control your personal information and how it is used”. The 
quote is printed 1.500.000 times - one for each CCTV registered in a 
public space in Denmark back in 2019. 

PUBLICCLASS
SURVEILLANCE
By Edith Terte

C
ode poetry :-x



18



19

Making and breaking code poems 
C

ode poetry :~S



20



21

Making and breaking code poems 

This poem is inspired by the use of repetition in Edith Terte Ander-
sen’s poem ‘Public class surveillance’. This use made me think about 
how practicing feminism is also in itself a continuing process, one 
that involves doing things again and again, as well as reflecting 
about what has been done and what is to come. Judith Butler writes 
on the ongoing performativity of gender, and I hope putting Butler’s 
words into this new context can inspire thought about practicing 
feminist intervention and thinking not as something contained to 
a single day such as Ada Lovelace Day, but rather something that 
continues and is ongoing.

 GENDER TROUBLE 
X PUBLIC CLASS 
SURVEILLANCE
By Anonymous

C
ode poetry  :~°



22



23

Making and breaking code poems 

Recursivity and loops are important in coding and in some strands of 
Anthropology. According to Marily Strathern Euro-Americans have 
many different values, but what they really value, are their values. 
This glimmery ‘poem’ has no particular value, but may be valued, or 
not, in any way you please, but likely according to capture mode and 
your appreciation of glimmery punk vibes.

IFTHEN
By Christopher Gad

C
ode poetry  :=>



24



25

Making and breaking code poems 

My poem is mostly an empty space where surveillance occur. 
The space is intervened by asking: how? 
The surveillance is not stopped, but maybe it could?

By Merethe Riggelsen Gjørding

ASKING

C
ode poetry  :-#



26

  DROP TABLE
By Mace Ojala

Making and breaking code poems

I was first introduced to the thought of printing absurd amounts of 
computer source code in the late 1990s; I heard lore that GNU devel-
opers had printed the entire BSD operating system to study its code 
and re-implement the functionality from scratch, thus avoiding copy-
right and licenses. Or was it BSD developers studying AT&T Unix? The 
legend is lost in time. Anyhow, the idea of tens or hundreds of thousand 
of pages of code printout has captivated me since.

Our beloved research tool TCAT, or Twitter Capture and Analysis 
Toolset, is a server-side software which periodically queries Twitter 
for selected keywords, and stores them in a local database (Borra and 
Rieder 2014). We run it for research and teaching purposes. I am not 
sure what went into me on a Tuesday not long ago; I couldn’t help 
myself. The day started off as any other day but by lunchtime it had 
turned out TCAT’s source code of is modest 2100 A4 pages, with 12 
point font. Warm, heavy, imposing pile of pages flowing mostly with 
PHP, SQL and JavaScript plus whatever one finds in a body of code. 
Printing itself was satisfying and I took sound recordings too.

It intuitively felt appropriate to bring this 10 kilogram object with 
me wherever I went on the university campus.

Making and breaking code poems 



27

Making and breaking code poems 

for ing in layering:
    lightness = mean(ing)
    what is not left of lightness:
        sort()

Making and breaking code poems 
C

ode poetry :>/

27



28

A colleague remarked that printing the source code was a kind of 
a breaching experiment a research technique attributed to ethno-
methodologist Harold Garfinkel (1967), which interrogate everyday 
cultural assumptions and norms about what should and should not 
be done with source code, printers and sheets of paper.

Three common reactions to walking around campus with an un-
wieldy 2100-page printout were following: “why?”, “isn’t that a huge 
carbon footprint?”, and “do you need hand?”. They suggest that 
printing code is an exceptional behaviour out of bounds, an unex-
pected exception to environmental values, or the pile will overflow 
onto the floor. The first is to be dismissed by throwing the exception 
back at the fool, the second verifying the assertion of the print’s 
environmental burden in comparison. The third, however, warrants 
a consideration.

<?php
try {
    self::carry( $all_the_printouts );
} catch ( OutOfBoundsException $e ) {
    throw $e;
} catch ( UnexpectedValueException $e ) {
    assert( co2( $all_the_printouts ) < co2( $a_lunch,  

       $vegetarian=false ));
} catch ( OverflowException $e ) {
    assert( $e->goodwill, “Thanks” );
    return $this->careHandler;
}
?>

Making and breaking code poems 



29

Making and breaking code poems 

– Harold Garfinkel. 1967. Studies in Ethnomethodology. Prentice-Hall.
– Erik Borra, Bernhard Rieder, (2014) “Programmed method: developing a toolset  
    for capturing and analyzing tweets”, Aslib Journal of Information Management,  
    Vol. 66 Iss: 3, pp.262 - 278.

references:

A helping hand reaches in just as prints are about to drop.
Code was on the table at the workshop. Having materials at the 

table helped drop the bar. Many of the printed source code pages 
were undone, cut, copied and pasted into poems you find now on 
these pages in your hands. Re-implementing; dropping bars.

TCAT collects data droppings of Twitter users in a database tables. 
At the end of each semester, with some hiraeth, we drop them.

Ah new semester –
DROP TABLE STUDENT_PROJECTS_%;
rest, humble server.

C
ode poetry :>0



30



31

Making and breaking code poems 

The poem is composed by pieces of the 1000+ pages long code of 
TCAT (Twitter Capture and Analysis Toolset); a digital tool used to 
scrape social media data from Twitter.

By Anonymous

  UNTITLED

C
ode poetry   *~)



32



33

Making and breaking code poems 

I took inspiration of Gerti Cory :) She discovered the conversion of 
glycogen to glucose and that is something very relevant to under-
standing our internal composition. So in that sense I wanted to 
convert her statements of the life of a researcher into something of 
my own. Taking a couple of lines and making it more ‘present’ to my 
context and time as a learning student and researcher.

LIGHTANDDARK
By David Søbæk Olsen

C
ode poetry :-(>



34

By Marisa Leavitt Cohn

  ELSE INCLUDE

Making and breaking code poems 



35

Making and breaking code poems 

Ada Lovelace Day causes me to reflect on the many efforts of in-
clusion made on my behalf as a woman proximate to STEM fields 
over the years. I have been included many times and I have learned 
incompletely, inadequately, slowly to code. I am non-proficient in a 
handful of languages. I have had my capacity to theorize code as a 
medium in my anthropological research questioned if I am myself 
not a proficient coder. For my poem, I had in mind to see if Ahmed’s 
work on diversity and inclusion, might itself be expressed in code. 
Ahmed has helped me reflect on these many efforts of inclusion I 
have taken part in as well as my hesitations and resistances to them. 
I chose to begin from the language in our TCAT application in part 
because it represented a kind of monolith of code, something that 
appears impenetrable and yet was so evocatively easy to break by 
stealing some of its pages. Working from lines of existing code turned 
out to provide ample opportunity to reflect upon Ahmed’s ideas. 
Code is full of language about powers, to grant or deny access, to 
start or end a process, to control or grant permission. Working with 
the comments in the code felt at moments like cheating, a back 
door to natural language for writing poems, but within the comments 
are expressions of desire about what we want to enable or empow-
er or limit. Eliminating lines of code felt empowering in a way that 
trying to write code never has. Removing what executes to leave 
something that resides in the meanings of the words. The imperative 
tones of code were an interesting material to work with, where writ-
ing poetry through deletion could break or stop that imperative by 
leaving it impotent, without its object. The enjambment of code’s 
existing line breaks I sometimes left  as is, to expose the repetitive-
ness of the code in a way that reminds me of Ahmed’s ideas on the 
tedium and never ending ness of diversity work, of just existing so 
others can continue to exist without growing weary. At other times 
I wanted to stitch the lines back together to concatenate what was 
once a serial set of commands. If else statements meet in “if else”, 
becoming a kind of threat. Binaries come back together again. This 
and not this come together as internal contradiction.

C
ode poetry  =^0



36

Left is safe Right is secret,
This request 
Left and right    
is empty.
We always replace this request;
This request implodes.

Set time for each, 
For each is set:
Nodespell time time,
Edgespell time time.

You can only follow The us who can exist,
Leave empty if you want to.

We made it possible 
Each capture, See 
Every role below 
Follow.
Withheld 
Withheld.

Create, if not null
Not null, create places
Prepare, create places 
Create, prepare, execute 
Create if not null
Create not,
Not null.

Withheld from us
Withheld from us
Possibly withheld from u.

Exit Already.
I will not exit.
Attempt to recognize if exiting. 

Making and breaking code poems 



37

Making and breaking code poems 

Exit,
If else 
Attempt to recognize.
We are greedy.
You r not recognized as containing exit.

Exit.
Include once or all
If else you did not specify enough to parse 
If exists, does not exist, or is not exiting.

Retry
Retry 
else include 
Include 
Include
Include
Include 
Only run from each.

If empty 
Die
If empty 
Die not.
Query new for each 
Else get time.
If we want the future 
We must set the end times to now
To start It starts the users who share the most

Another seems to exit 
Sending a signal 
Waiting for a graceful exit.
We need some time to allow sleep.
Sleep 
if unable 
Break.

C
ode poetry :^0



38



39

Making and breaking code poems 

I really don’t mean this to sound like a “Back in my day…” kind of a 
poem, but inevitably it will. But I wanted to capture a moment in the 
mid 90s where we were encountering internet infrastructure as it was 
being constructed, guiding us online (many) for the first time. Of 
course, infrastructure isn’t that exciting so it was just reflections of 
cables being laid in the sandy soil of a West Australian primary school. 
It’s written in HTML because… well, CSS and JS and other coding 
languages that visually make up the internet simply weren’t around 
back then (it was the geocities era, after all). What’s with the Golden 
Girls reference? I don’t know, it was a big deal for me back then. I was 
a weird kid.

NETDAY
By Jessamy Perriam

C
ode poetry  :^×



40



41

Making and breaking code poems 

The poem decomposes words from Donna Haraway’s Staying with 
the Trouble: Making Kin in the Chthulucene. I broke the original text 
down into code-like structure as an attempt to revel its underlying 
logic, which often helps me to grasp the content when reading nat-
 ural language.

By Imke Grabe

C
ode poetry :^P

STORIESTELL
STORIES



42

Making and breaking code poems 



43

Making and breaking code poems 

 YOUR
CODE
POEM

C
ode poetry :¬D



44

In an interview twenty years ago, Jan-
ice J. Heiss asked Richard Gabriel, a 
computer scientist with a Master in 
Fine arts in Poetry, how writing po etry 
had influenced the way he wrote code. 
His response:

– Writing code certainly feels very 
similar to writing poetry. When I’m 
writing poetry, it feels like the center 
of my thinking is in a particular place, 
and when I’m writing code the center 
of my thinking feels in the same kind 
of place (Heiss and Gabriel 2002)

Through the event that produced 
these poems, we explored this ‘cen-
tre of thinking’, together, exploring 
the question of how code and poe try 
work. The poems in this collection 
are the printed result. But why bring 
code and poetry together here, now, 
and why in this (printed) format? A 
similar question could be asked of 
poetry and regulation, a combination 
of genres with which we have previ-
ously experimented in ETHOS Lab. A 
partial answer comes from our role 
in convening people within the Lab, 

and experimenting with methods that 
open up the world, showing us how 
they do so as we put them to work.

Like the erasure poetry we created 
from the General Data Protection 
Regulation (Douglas-Jones and Cohn 
2018, Douglas-Jones, Blønd and 
Bluum 2020), code poetry can be 
considered method as much as inter-
vention, as much an analytical exer-
cise as a site of collaboration and 
meaning making. However, the poems 
and conversations resulting from 
code poetry lead us in different di-
rections. In this afterword, we de-
scribe these directions, their impli-
cations in our present moment, and 
what it means to encounter code 
poetry in the early 2020s. 

Writing
Code poems have likely existed as 
long as code, and, some scholars, 
argue, since before computation as 
we know it today (Freeman 2019, 
Chetcuti 2014, Aarseth 1997)1. On an 
archived Usenet site of the 1990s, a 

AFTER WORD

1 Chetcuti analyses ee. Cummings poem “I will be” alongside Stefan’s “The Dreamlife of 
Letters” to show how typewriter code illustrates the ‘instrumental role of the machine in 
the poem’s creation’ (2014:176).

Making and breaking code poems 



45

Making and breaking code poems 

query posted by a Daniel Rosenberg 
about “forking a bunch of processes” 
led, over the course of a couple of 
weeks, to a discussion about poetry 
written in Perl (Practical Extraction 
and Report Language), the program-
ming language developed by Larry 
Wall in 1987. As the replies go back 
and forth, posters discuss how ‘bare 
word mode’, also known as ‘perl po etry 
mode’ came to be, with Randal 
Schwartz claiming that ‘the real rea-
son this was added was to better 
support Perl poetry’, tagging “Sharon”. 
“Sharon” was Sharon Hopkins, who 
joined the thread, confirming:

– Yup. :­) There was even a paper 
on Perl poetry at the 1992 Winter Use­
nix conference, with examples by 
myself, Larry Wall, and Craig Counter­
man, plus a FORTRAN example by 
David Mar. (Hopkins 1993).  

Through this exchange, we can see 
some of the aesthetic and practical 
considerations that early Perl code 
poets were discussing, and how the 
poetic and aesthetic was also given 

space in professional settings. By 
asking participants at our event to 
read as much as write, we were invit-
ing them to get familiar with elements 
of code, the visual and the actionable. 
We were inviting them into this space 
where the poetic and the profes sional 
can occupy the same environment.

Reading and Compiling
In what ways can this collection be 
read? Reading immediately raises the 
question: who or what is the imagined 
reader? You, human reader, can ac-
cess some (aspects) of these poems. 
To borrow the poet John Cayley’s 
formulation, there is an ‘ambiguous 
address’, potentially both ‘human 
reader and machinic processor’ can 
be considered readers. For Chetcuti 
if code is executable interface text, it 
raises the question ‘will the human 
reader remain its primary addressee?’ 
(2014:177).  Critically, Cayley asks what 
a ‘code-naïve reader’ learns about the 
‘characteristics and power of code’ 
from code poems? (Cayley 2002). It 

By Rachel Douglas-Jones 
and Marisa Leavitt Cohn

C
ode poetry   ;-}



46

is a question we might ask for our own 
settings. Perhaps Adrian Mackenzie 
would reply that code, ‘as the site of 
social negotiations that structure and 
organize human agency, behavior and 
intention’ (Mackenzie, summarized in 
Hayles 2006), necessitates an en-
counter with its power. In our event, 
by providing snippets of feminist 
scholarship, and bringing them into 
conversation with code elements, we 
required our poets to also be readers. 
Yet the question remains for you as 
a reader of this collection: do ‘code 
and language require distinct strate-
gies of reading’? (Cayley 2002).

One reason Cayley argues that 
they might require distinct strategies 
is the breadth of genres of code poe-
try, some of which we find in this col-
lection. In Edith Terte’s poem, for 
example, this tension between pos-
sible readers comes most to light: 
printed here in these pages, we as 
readers cannot make the code run. 
As Cayley puts it, ‘for the code to 
func tion as generator, as program-
maton, as manipulator of the text, it 
must, typically, be a distinct part of 
the global textual system; it must be 

possible to recompile the code as 
operative procedures, as aspects of 
live-art textual practice’ (2002). A 
printed collection is not where that 
happens, but we have, to take an other 
meaning of compilation, compiled a 
collection.

Including?
On a day like Ada Lovelace Day, the 
celebration of women and nonbinary 
people in STEM, we are called to acts 
of recognition and inclusion. But what 
does inclusion mean in STEM fields, 
where the work of women who have 
contributed to these fields’ found-
ations has historically been erased, 
(Hicks 2017), and where ‘being includ-
ed’ often privileges those doing the 
including? (Ahmed 2012). Being able 
to code continues to be seen as an 
‘accessible’ entry into STEM fields that 
is available as an already open door. 
Code camps and academies highlight 
testimonials of career switches made 
possible by learning to code. (Imagine 
such an accessible entry to other 
STEM fields, just learn the syntax of 
astrophysics and go!) 

If code is promised as a door that 

Making and breaking code poems 



47

Making and breaking code poems 



48

is open, or which we attempt to prop 
open through efforts like Ada Lovelace 
Day, then maybe we can reflect upon 
that door through poetry2. As Jane 
Ab  bate has noted, coding is offered 
as a source of empowerment through 
sl ogans like Anyone can code! when 
in fact there continue to be many bar-
riers to partici pation in computing 
fields beyond mak ing programming 
itself more accessible (Abbate). “Su-
perficial claims that learning to code 
will automatically be empowering can 
mask a lack of commitment to struc-
tural change” (Abbate 2021). Those 
efforts to teach people to code are 
based on a false assumption that 
mastery and meritocracy will work 
to gether to lift anyone who can gain 
access to the tools of programming 
languages. 

What then does code poetry offer? 
Is it meant to be a way into code, open 
a different sort of door? Perhaps re pla-
cing slogans like Anyone can code with 
Anyone can write code poetry, we seek 
to open a different kind of space. Not 

so much to include and make code 
appealing to non-coders, but to con-
sider the medium of code to gether, to 
encounter the privileges a ccrued to 
writing code, and consider the role of 
code in structuring power r elations of 
which we are a part. 

Breaking with code
By providing elements to participants, 
such as a very large pile of existing 
code and printed out syntax, we aimed 
to open a writerly space to work with 
code as part of poetry making and 
feminist thinking. Using methods of 
paper collage, cutting, pasting, delet-
ing, we begin not only from writing 
code but also breaking it apart, allow-
ing us to use its elements without the 
retribution of a compiler that says 
Does Not Compute. By breaking code, 
we also work with the metaphor of 
breaking bread together, offering a 
table spread of code elements which 
we consume together. Cutting and 
collaging can be a means not only of 
writing but also reading, dissembling, 

2 Drawing on Ahmed we can ask how code as an already open door “can tell us some thing 
not only about who can get in but who can get by or who can get through” and how 
keeping the door open is not only to create a pipeline to empowerment but also provide 
exits. (Ahmed 2020).

Making and breaking code poems 



49

Making and breaking code poems 

reassembling, and partaking of code 
where the outcome is undetermined. 

Working with existing code to write 
poetry also allows us to embrace the 
extensive collaborative nature of cod-
ing work – the code is not only what 
runs, but the comments, the errors, 
the considerations and suggestions 
embedded into code. In the comments 
there are not only explanations but 
also reminders of how to use or not 
use the code, what will break if not 
used properly. There are limits on these 
powers of the code – it can be mis-
used. At times composing code poet-
ry using elements of “natural language” 
from comments felt like cheating. 
Likewise, others expressed a feeling 
that a collage that works freely with 
code syntax ignoring how those ele-
ments function was “not proper” code 
poetry. This challenges us to consid-
er breaking with notions of purity in 
how code performs in world making. 

The collection comprises running 
code poems as well as poetry that 
embrace code as a ‘center of thinking’. 

We find poems that break code syn-
tax apart to repurpose it for feminist 
thinking, as well as poems that seek 
to find code-like structure within femi-
nist thought to grasp them different-
ly or make them one’s own. Writing 
code poetry in this way we suggest, 
offers ways into code via feminist 
thought as well as ways into feminist 
thought via code. We find poetry re-
flecting overlaps of thought across 
diverse fields, or drawing out person-
al histories with code, or drawing us 
into reflections on the way code in-
habits our everyday lives through the 
infrastructures around us.

Our workshop was not, then, a space 
of mastery over code by the indi vidual 
authors writing the poems. It was a 
collective confronting toget her of “what 
is code” anyway – is it sy n tax, is it exe-
cution, is it volume, is it mon olith, is it 
words? Encountering our own ambiv-
alences towards mastery of code in 
making poetry provides both a way in 
and a way out of ideas of what code is. 

C
ode poetry   ;-]



50

Aarseth, Espen. 1997. Cybertext: 
Perspectives on Ergodic Literature. 
Balti more and London: John 
Hopkins Uni versity Press. 

Abbate, Jane. 2021. “Coding Is Not 
Empowerment”, Your Computer  
Is on Fire, Thomas S. Mullaney, 
Benjamin Peters, Mar Hicks,  
Kavita Philip.

Ahmed, Sara. 2012. On Being 
Included: Racism and Diversity in 
Institutional Life. Durham, NC: 
 Duke University Press.

Ahmed, Sara. 2020. ”Slammed 
Doors:  Diversity and/as Harass-
ment”, Paper presented for Thinking 
of Leaving: Racism and Discrimi-
nation in British Universities Panel, 
March 6, University of York.

Cayley, John. “The Code is not the 
Text (Unless It Is the Text)”, 
Electronic Book Review,  
September 10, 2002.

Chetcuti, Clara. 2014. “Enc0d1ng 
Poe try” antae 1(3): 166-180.

Freeman, John. 2019. “Code Poetry 
in Motino: E.E. Cummings and his 
Digital Grasshopper” Postmodern 
Culture 29(2). 

Heiss, Janice J. and Richard 
Gabriel. 2002. The Poetry  
of Programming. https:/ 
/www.dreamsongs.com/ 
PoetryOfProgramming.html

Hicks, Mar. 2017. Programmed 
Inequality. How Britain Discarded 
Women Technologists and Lost Its 
Edge in Computing. Boston,  
MA: MIT Press

Hopkins, Sharon. 1993. Reply: 
Forking a bunch of processes 
https://groups.google.com/g/ 
comp.lang.perl/c/jVu7Zjn9JcY/m/
yPMby6sCyyEJ?hl=en
[accessed December 22nd 2021]

Hayles, N. Katherine. 2006. Traumas 
of Code, Critical Inquiry 33(1): 
136-157 https://criticalinquiry.
uchicago.edu/traumas_of_code_
by_n._katherine_hayles

REFERENCES

Making and breaking code poems 



51

Making and breaking code poems 

#!/usr/bin/perl
APPEAL:
listen (please, please);
open yourself, wide,
join (you, me),
connect (us,together),
tell me.
do something if distressed;

@dawn, dance;
@evening, sing;
read (books,poems,stories)  
until peaceful;
study if able;

write me if-you-please;
sort your feelings, reset goals, seek 
(friends, family, anyone);
do not die (like this)
if sin abounds;

keys (hidden), open locks, doors,  
tell secrets;
do not, I-beg-you, close them, yet.
accept (yourself, changes),
bind (grief, despair);
require truth, goodness if-you-will, 
each moment;

select (always), length(of-days)
# Sharon Hopkins, Feb. 21, 1991
# listen (a perl poem)
# {for jimmy (and tom)}

#listen (a perl poem)
Sharon Hopkins

Making and breaking code poems 

51

C
ode poetry  :-/



52

<link rel=”book design” 
href=”anagramdesign.no”>


